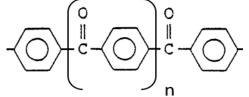
Macromolecular structure and interactions


Forces in Biomolecules

- 1. The small molecule urea can form hydrogen bonds with good affinity to peptide bonds in proteins and peptides.
 - a. What is expected to happen to a folded protein if urea is added to the solution?
 - b. Explain the molecular origin of this effect.
- 2. In an unfolded protein, the pK_A values of glutamate and lysine are 4.3 and 10.5, respectively. In folded lysozyme exists a ion-pair interaction between K₁ and E₈ which stabilizes the protein by 3 kJ/mol ($\Delta G^0 = 3$ kJ/mol)
 - a. Which are the pK_A values of K_1 and E_8 in native Lysozyme?
 - b. How would a substitution of E_8 to Q alter Lysozyme stability at both pH 7 and pH 2?

Conformation of macromolecules

- 3. In the nuclear pore complexes, there exist unfolded protein domains of the sequence (GLFG)_n which act as a filter. In average, what is the approximate size (end-to-end distance) of one of these proteins if n is in average n = 45?
- 4. The radius of gyration of denatured and reduced Ribonuclease A measured by small angle X-ray scattering is 3.32 nm. From this result, estimate the molecular weight of the protein. Compare your result to literature values (search the protein sequence on https://www.uniprot.org/, then calculate the MW using https://web.expasy.org/protparam/). Explain your findings.
- 5. The human cell contains a diploid genome with approximately 6.4 billion base pairs. The helical rise (distance between adjacent bases) in DNA is 3.4 Å per base pair.
 - c. Calculate the radius of gyration of such a DNA molecule. Note that the persistence length lp of DNA is 50 nm.
 - d. Compare the volume such a molecule would take up to the volume of a human cell nucleus. How many fold is the DNA compacted in our cells?
- 6. Estimate the characteristic ratio and persistence length of the following polymer. Would you expect that your calculation comes close to an experimental value? Explain!

answer.

7. You study the stability (∆G) of a protein. A single amino-acid mutation, detected in a cancer patient, lowers the stability of the protein strongly such that it loses function. However, looking at the protein structure, this mutation localizes to a loop of the protein and the mutated amino acid does not seem to be involved in an interaction in the native state.
→ Propose a mechanism how this mutation could lead to protein destabilization.
Use the protein stability energy landscape (∆G vs. folding coordinate) for your

- 8. You need to synthesize a very stable, helical peptide as an inhibitor of a particular receptor. The peptide is however not very strongly helical. You suspect that the helical dipole has an unfavorable interaction with the N- and C-terminus of the peptide.
 - a. Explain the reason for this unfavorable interaction.
 - b. Propose a strategy, e.g. via chemical modification of the peptide, how to mitigate this problem.
- 9. To generate circular polarized light, you use a plate made from magnesium fluoride (MgF₂), whose birefringent properties are given below.
 - a. How thick should the plate minimally be to provide either left or right-handed circular polarized light for green light at 532 nm?
 - b. How thick should the plate be if a minimal thickness of 1 mm is required for manufacturing purposes?

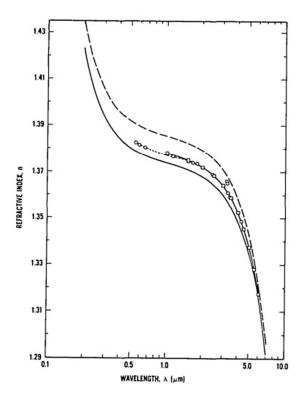


Fig. 2 Refractive index vs wavelength (μ m) for the O and E rays of single-crystal MgF₂ as determined in the current study and for two specimens of hot-pressed MgF₂. Single-crystal MgF₂: O ray (—); E ray (– –). Hot-pressed MgF₂: Buckner et al., ref. [19] (o); Herzberger and Salzberg, ref. [20] (\Box).

https://opg.optica.org/ao/fulltext.cfm?uri=ao-23-12-1980&id=27584